您选择的条件: Heuy Dong Kim
  • Influence of Tip End-plate on Noise of Small Axial Fan

    分类: 动力与电气工程 >> 工程热物理学 提交时间: 2017-06-26 合作期刊: 《热科学学报》

    摘要: In this work, tip end-plate is used to improve the noise performance of small axial fans. Both numerical simulations and experimental methods were adopted to study the fluid flow and noise level of axial fans. Four modified models and the prototype are simulated. Influences of tip end-plate on static characteristics, internal flow field and noise of small axial fans are analyzed. The results show that on basis of the prototype, the model with the tip end-plate of 2 mm width and changed length achieved best noise performance. The overall sound pressure level of the model with the tip end-plate of 2 mm width and changed length is 2.4 dB less than that of the prototype at the monitoring point in specified far field. It is found that the mechanism of noise reduction is due to the decrease of vorticity variation on the surface of blades caused by the tip end-plate. Compared with the prototype, the static pressure of the model with the tip end-plate of 2 mm width and changed length at design flow rate decreases by 2 Pa and the efficiency decreases by 0.8%. It is concluded that the method of adding tip end-plate to impeller blades has a positive influence on reducing noise, but it may diminish the static characteristics of small axial fan to some extent.

  • Effects of vortex Generator on Cylindrical Protrusion Aerodynamics

    分类: 动力与电气工程 >> 工程热物理学 提交时间: 2017-06-22 合作期刊: 《热科学学报》

    摘要: The suction side boundary layer evolution of a high-lift low-pressure turbine cascade has been experimentally investigated at low and high free-stream turbulence intensity conditions. Measurements have been carried out in order to analyze the boundary layer transition and separation processes at a low Reynolds number, under both steady and unsteady inflows. Static pressure distributions along the blade surfaces as well as total pressure distributions in a downstream tangential plane have been measured to evaluate the overall aerodynamic efficiency of the blade for the different conditions. Particle Image Velocimetry has been adopted to analyze the time-mean and time-varying velocity fields. The flow field has been surveyed in two orthogonal planes (a blade-to-blade plane and a wall-parallel one). These measurements allow the identification of the Kelvin-Helmholtz large scale coherent structures shed as a consequence of the boundary layer laminar separation under steady inflow, as well as the investigation of the three-dimensional effects induced by the intermittent passage of low and high speed streaks. A close inspection of the time-mean velocity profiles as well as of the boundary layer integral parameters helps to characterize the suction side boundary layer state, thus justifying the influence of free-stream turbulence intensity on the blade aerodynamic losses measured under steady and unsteady inflows.

  • Supersonic Cavity Flows over Concave and Convex Walls

    分类: 动力与电气工程 >> 工程热物理学 提交时间: 2017-06-22 合作期刊: 《热科学学报》

    摘要: To promote the utilization efficiency of coal resources, and to assist with the control of sulphur during gasification and/or downstream processes, it is essential to gain basic knowledge of sulphur transformation associated with gasification performance. In this research we investigated the influence of O-2/C molar ratio both on gasification performance and sulphur transformation of a low rank coal, and the sulphur transformation mechanism was also discussed. Experiments were performed in a circulating fluidized bed gasifier with O-2/C molar ratio ranging from 0.39 to 0.78 mol/mol. The results showed that increasing the O-2/C molar ratio from 0.39 to 0.78 mol/mol can increase carbon conversion from 57.65% to 91.92%, and increase sulphur release ratio from 29.66% to 63.11%. The increase of O-2/C molar ratio favors the formation of H2S, and also favors the retained sulphur transforming to more stable forms. Due to the reducing conditions of coal gasification, H2S is the main form of the released sulphur, which could be formed by decomposition of pyrite and by secondary reactions. Bottom char shows lower sulphur content than fly ash, and mainly exist as sulphates. X-ray photoelectron spectroscopy (XPS) measurements also show that the intensity of pyrite declines and the intensity of sulphates increases for fly ash and bottom char, and the change is more obvious for bottom char. During CFB gasification process, bigger char particles circulate in the system and have longer residence time for further reaction, which favors the release of sulphur species and can enhance the retained sulphur transforming to more stable forms.

  • Theoretical and Computational Analyses of LNG Evaporator

    分类: 动力与电气工程 >> 工程热物理学 提交时间: 2017-03-31 合作期刊: 《热科学学报》

    摘要: Theoretical and numerical analysis on the fluid flow and heat transfer inside a LNG evaporator is conducted in this work. Methane is used instead of LNG as the operating fluid. This is because; methane constitutes over 80% of natural gas. The analytical calculations are performed using simple mass and energy balance equations. The analytical calculations are made to assess the pressure and temperature variations in the steam tube. Multiphase numerical simulations are performed by solving the governing equations (basic flow equations of continuity, momentum and energy equations) in a portion of the evaporator domain consisting of a single steam pipe. The flow equations are solved along with equations of species transport. Multiphase modeling is incorporated using VOF method. Liquid methane is the primary phase. It vaporizes into the secondary phase gaseous methane. Steam is another secondary phase which flows through the heating coils. Turbulence is modeled by a two equation tur- bulence model. Both the theoretical and numerical predictions are seen to match well with each other. Further pa- rametric studies are planned based on the current research.